Forschungskooperation mit Uni Ulm: Long-Term Routing für Roboter-Segelboote

Eine Forschergruppe der Universität Ulm (Deutschland) arbeitet in Kooperation mit dem Roboat-Team von INNOC an einem CHR-basierten Ansatz für das Long-Term-Routing von autonomen Segelbooten.

Das Projekt wird im Rahmen des Seventh International Workshop on Constraint Handling Rules am 20. Juli 2010 in Edinburgh (UK) vorgestellt.

Long-term routing for autonomous sail boats with CHR  (Ayman Adel Abdelsamie Abdelaal, Frank Raiser, Thom Frühwirth, and Roland Stelzer)

Robotic sailing is a continuously improving field of research. Finding
an optimum route for each sailing trip is one of the important and
complex tasks for a robotic sailboat. This thesis puts the building
blocks for long-term routing in robotic sail boats. It introduces a
front end for long-term routing based on Constraint Handling Rules as it
is used to implement the routing algorithm. This front end provides a
rotatable and zoomable simulation for the earth with the ability to
represent forecast data for wind directions and speeds. Beside a normal
user interface for this application, it has a multi-touch enabled user

Erste sehr vielversprechende Ergebnisse wurden bei der International Robotic Sailing Conference (IRSC) 2011 in Lübeck präsentiert.

A Rule-Based Approach to Long-Term Routing for Autonomous Sailboats (Langbein, J.; Stelzer, R.; Frühwirth, T.)

We present an algorithm for long-term routing of autonomous sailboats with an application to the ASV Roboat. It is based on the A*-algorithm and incorporates changing weather conditions by dynamically adapting the underlying routing graph. We implemented our algorithm in the declarative rule-based programing language Constraint Handling Rules (CHR) [4]. A comparison with existing commercial applications yields considerably shorter computation times for our implementation. It works with real-life wind forecasts, takes individual parameters of the sailboat into account, and provides a graphical user interface.

Download full paper

zurück zu: News Archiv